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This paper presents a numerical procedure for the direct numerical solution of the 
collisionless Boltzmann equation appropriate to stellar dynamics. The velocity distribu- 
tion need not be isotropic but spherical spatial symmetry is assumed. The difference 
scheme uses a second-order implicit scheme combined with an analog of the S, method 
of Carlson. Inclusion of collisions, external force fields, and the two-body distribution 
function will be straightforward. The results for the collisionless system are accurate 
up to 10 crossing times. Both known analytic solutions and nonequilibrium models 
have been tested. An appendix gives the absicissas and weight factors for the Gaussian 
integration of S:~(X)X” L/X. 

I. TNTROOUCTI~N 

The dynamical evolution of a system of N particles that move under the influence 
of their own gravitational field is an old one in the area of stellar dynamics, The 
most frequently used methods of solution are (i) direct numerical integration of 
the equations of motion for each particle, (ii) a Monte Carlo calculation for the 
orbits of the particles, or (iii) a fluid dynamical approach, wherein moments of 
the Boltzmann equation define the density, pressure tensor, etc. Numerical 
integration of the Newtonian equations of motion, while intrinsically the simplest 
and most direct course, is limited to small N (e.g., N < 500). The Monte Carlo 
approach is very expensive and accurate for only a few relaxation times. The fluid 
dynamical method is usually limited to systems with a nearly Maxwellian velocity 
distribution. Hence, there is a need for a technique that can compete with the 
Monte Carlo calculations (in terms of speed and accuracy) and not be limited by 
either the assumption that N is small, or that the velocity distribution is nearly 
Maxwellian. 

The method presented in this paper allows one to integrate directly the 
collisionless Boltzmann equation. It has been formulated in such a way that the 
inclusion of collisions, of external force fields, and of the two-body distribution 
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function (which yields information about particle-particle correlations) can be 
simply effected. Thus, the evolution of globular clusters, tidally limited elliptical 
galaxies, and clusters of galaxies may be studied in detail. Most of these objects 
are nearly spherically symmetric, but their individual constituents are not neces- 
sarily without angular momentum. Hence, we discuss only the (spatially) spherically 
symmetric case with an anisotropic velocity distribution. No other assumptions 
are made regarding the system structure. 

In the following section, the proposed difference scheme is presented. Section III 
contains the results of numerical tests using time-independent (analytic) solutions. 
In Section IV, the technique is further illustrated by studying a nonequilibrium 
situation. Comparisons are made to other, similar work. The Appendix contains 
the numbers for the Gaussian approximation to 

I' 
f f(x) x2 dx = f b,f(xJ. 

j=l 

This extends the work of Fishman [3]. 

IT. THE DIFFERENCE SCHEME 

A. Analytic Preliminaries 

The collisionless Boltzmann equation has the form 

(1) 

wherefis the single particle distribution function, (U, V, W) is the velocity vector, 
and spatial spherical symmetry has been assumed. The components of the vector 
(U, V, W) and (dU/dt, dV/dt, dW/dt) are 

U = drldt, dU/dt = -a(r, t) + ( V2 + W2)/r, (3) 
V = r d%/dt, dV/dt = -UVjr + W2 cot %jr, (4) 

and 
W = r sin % d+/dt, dW/dt = -UWjr - VWcot %lr (5) 

[6], where a(r, t) is the negative gradient of the self-consistent gravitational 
potential, #J is the spatial azimuthal coordinate, and % is the spatial latitudinal 
coordinate. If spherical velocity coordinates (u, 0, @) are introduced, viz 

u = c’ cos 0 = pa, (6) 
V = z‘ sin 0 cos 0, (7) 

W = c sin 0 sin @, (8) 
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and the restriction that the velocity distribution is everywhere axisymmetric with 
respect to the radius vector is imposed, then (2) takes the form in (9). 

If G is the gravitational constant and m the particle mass, then 

a(r, t) = GM(r, t)/r2 = (Gm/r2) Ior 47ry2 dy ia 27rv2 dv J-I’f(y, v, p, t) dp. (10) 

As a last preliminary step, the physical variables are scaled and the 
dimensionless variables, x, U, T, g, and a: are introduced. If N is the total number 
of particles, U, the dimensionless maximum speed, R the total radius, and /3 
related to the kinetic temperature (= l/kT) when the velocity distribution is 
Maxwell-Boltzmann) then 

x = r/R, t = R(m/?)lf2 T/U, , 24 = (m/3)‘J2 v/urn , 
and 

01 = aRm/31um2, f = N(m&3/2 g/(8rr2R3). 

When g(x, U, p, 0) is specified, its further evolution is given by (13). 

(11) 

(12) 

2 + pug - a [p g + 0 ; p2) $1 + (l -xpz) u $ = 0. (13) 

B. The D@erence Scheme 

There appear to be two straightforward ways to handle the u, p variation. One 
is to write 

(14) 

where P1 is the Ith Legendre polynomial and L, is the nth Laguerre polynomial. 
This proved unsatisfactory. Instead, we consider a variation of the S, method of 
Carlson [I] (see [7]). Let {pj} (pj E (- 1, I), j = I,..., J), {ulc E (0, l), k = I,..., K) 
be a division of the p, u ranges. Assume one only knows g at these net points. If 
we abbreviate g(x, u = uk , p = pj , T) by gjk(x, T) then (13) is replaced by the 
JK differential equations 

= h&x, T); j = 1, 2 ,..., J; k = 1, 2 ,..., K. (15) 
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The derivatives with respect to p and u are evalutated using a three-point Lagrange 
interpolation formula. To solve these JK equations, a three-level implicit difference 
scheme is employed. The spatial grid is 

x(1) = 0, x(2) = dx/2, x(i) = (i - 2) Ax, for i = 3,4 ,..., I. (16) 

Denote gik(x = x(i), T = n 4~) by g&(i). Then, the most common term (there are 
slight variations for i = I, 2, 3, I; see (20)) of the difference scheme is 

P&l’(i) - 4&(i) + &3i)1/(2 AT) 

+ (~~242 dx)[gj”,+‘(i + 1) - g$+‘(i - l)] = h,“,(i). (17) 

To compute g,“,+‘(l) (since &(l) has the form of O/O) the fact that the particle 
density near x = 0 is a continuous function of x is used. In particular, the three- 
point Lagrange interpolation formula centered at x = x(3) is extrapolated to 
x = 0. Thus, 

g;;‘(l) = (S/3) g;;‘(2) - 2g,“,+‘(3) + (l/3) gjnkl(4). (18) 

Let bil, = pjuk 07/(3 dx) and drop obvious jk subscript pairs. Then. in matrix 
notation, the full difference scheme can be written 

Agn+’ = (2 4T/3) h” + [dg” - g”-1]/3, I” 9-I 

where 

r-2b 1 26 0 0 0 ..* 0 0 
0 -8b/3 1 + 2b 2b/3 0 0 a.+ 0 0 
0 0 -b 1 b 0 .‘. 0 0 

A= O 0 0 -b 1 b 0 0 

0 0 0 0 0 0 .*. -b 1 
LO 0 0 0 0 0 ... b -4b 

> (19) 

L 

(20) 

b 
1 + 3b J 

This matrix is augmented by (18) to form A’ (the augmentation is in the first 
row of A’). 

Attempts to solve this system by using recurrence methods or relaxation 
techniques have proved unsatisfactory due to instability. Moreover, it is clear that 
the absolute value of det(A’) ‘v 1, and that the inverse of A’ has significant elements 
only along its main diagonal and the three diagonals above and below the main 
one. Furthermore, since A’ is independent of both i and n once the ~1, u set and 
dT/dX have been chosen, the JK inversions need be performed only once each. 
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Also, one need store just (7Z- 12) JK elements instead of PJK elements. There- 
fore, a more satisfactory method consists of computing and storing the inverse 
of A’ once and for all, for every value of bj, , 

The choice of {ZQ} and {uk> ideally should maximize the accuracy of the p, M 
derivatives and the calculation of N, (21) by Gaussian quadrature. 

ol(x, T) = (GN/w”&L,/R) Jo” (y/x)” dy Jo1 u2 du j-1’ g dp. (21) 

In practice, the Z.L, u set is the one for the Gaussian quadrature of the Z.L, u integrals 
in (21) (see the Appendix). 

III. NUMERICAL TESTS 

There exists an infinity of analytical solutions to the time-independent collision- 
less Boltzmann equation. These can be used to test the accuracy of the difference 
scheme. Of special astrophysical interest is the isothermal sphere, polytropes [2] 
and generalized polytropes [4]. There are always three conserved integrals: They 
are the total mass M, the sum of the squares of the angular momentum of the 
particles L2, and the total energy E. If {wj}, (WV,‘} are the weights in the Gaussian 
quadrature formulas for the ZL, u integrations, then, 

A4 = mN = mNu,” c wjwk' 

j,k s 

1 

x2gj, dx, (22) 
0 

and 

where 

L2 = (NnzR2um5/p) c IV~W~‘(~ - Z.L~~) uk2 Jo1 x4gik dx, 
j*li 

E=K+i& 

(23) 

(24) 

K = (NuTn5/2/3) c wjwk’uk2 
j,k 

s ’ x2gik dx, (25) 
0 

9 = -(GM2um6/R) c wjwk lo1 xgjk(x, T) c w,ws jozy2g,,(y, T) dy dx. (26) 
j,k r,s 

Also of interest in describing the cluster structure is the moment of inertia Z and 
the velocity moments (PU) (=O), (ZJ~U~), and ((1 - p2) u2/2). The average of ZLU 
must vanish because there is no net motion of the center of mass. The ratio 
i = ((1 - p2) u~/~)/(~~u~) determines the anisotropy of the velocity distribution 
(i = 1 for an isotropic distribution). Finally, for systems satisfying the virial 
theorem, K/Q = -4. 
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A. The Isothermal Sphere 

Here, as in all numerical tests described in this section, J = K = 16, Z = 32 
(dx = l/30), and 47 = 0.01. If E = (CJz + V2 + W2)/2 + C(r) is the particle 
energy per unit mass then the distribution is 

.f = B ev(-~B4, (27) 

where 4 is the gravitational potential and B is a constant. Thus, 

g(x, u, p, 0) = B’z(x) exp[--u2u,2/2], (28) 

where Z(X) satisfies 

(d/dx)[x2(d In z/dx)] = -x2z; z(0) = 1, z’(0) = 0. (29) 

In this case, U, is really infinite. However, because of the rapid decrease of the 
exponential u, = 5 or 10 covers the speed range of interest. The results in Table I 
used u, = 10 (the crossing time T = R/((u 2 )) 1/Z = 5.35 x 1O-2 so AT = 0.187T) 
and extend to x = 6 from (29). Isothermal spheres have a well-known instability 
at x = 6.45. 

The units for Table 1 are 1012M, for mass, IOMpc for distance, and lOlo yr 
for time. These are appropriate for the study of clusters of galaxies and 
G = 4.495 x lO-4 in these units. 

The difference scheme is accurate for a time -1OT when a flow of mass toward 
the center renders the results useless. 

B. Polytropes 

The distribution function is [2] 

,I‘ = B(E, - E)“-~/~, E < ~51, 

= 0, E >, El, 
(30) 

where E is as before and B, El are constants. It is known that polytropes with n > g 
are stable. In this case 

g(x, 24, p, 0) = B’[w(x) - u21n--3/2, w(x) > u2 

= 0, w(x) < uz, 
(31) 

where w satisfies 

(d/dx)(x2(dw/dx)) = -x2wn; w(0) = 1, w’(0) = 0. (32) 

The numerical accuracy is illustrated by using the n = 5 polytrope (also 
called Plummer’s model) since (32) can be analytically solved in this case 
(w(x) = l/(1 + x”/3)‘l”). 

581/20/z-4 
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The results are in Table I (T = 2.47 x 1O-2 so 4~ = 0.405T, note that T is 
always independent of u,). 

In this instance, the results are good for a time -15T when a flow of mass 
outwards from the center makes the results untrustworthy. In this case, and in 
the isothermal case, the rise in (PU) and L2 is also due to the fact that the p step 
length is the largest of x, ,LL, U, and T. However, it is clear that there is no fictious 
force (due to numerical errors) causing significant motion of the center of mass. 

C. Generalized Polytropes 

The distribution function is 

f = B(E, - cp--3/2/42m, E < 4 
=o 

(33) 
E >, El, 

where E is the particle energy (as before), B and E1 are constants, and 
A2 = x2u2(1 - p2). Here, 

g(x, u, p, 0) = B’[w(x) - u~]~-~/~[x~u~(~ - p2)]““, w(x) 3 2.42 

0, w(x) < u2, 
(34) 

= 

where w satisfies [4], 

(d/dx)(x2(dw/dx)) = -x~~+~w~+~; w(0) = 1, w’(0) = 0. 

This equation has the singular solution w, = a/xP where 

an++l = p(1 - p), p = 2(m + l)/(n + m - 1). 

(35) 

(36) 

This fact can be used to solve (35) analytically whenever n = 3m + 5. The result is 

l/w = [1 + (x2(m+1)/(2m + 3))]112(“+1) (37) 

(compare with Plummer’s model, i.e., set m = 0). One can also show (in general) 
that i = m + 1 for a generalized polytrope. 

The last rows of Table I contain the result of a test with m = 0.5, n = 6.5. The 
crossing time is T = 3.33 x 1O-2 (so d T = 0.3T). The results are good for a time 
-1ST. The maximum density is at x = 1 (the direct opposite of the two previous 
tests) and there is a slow flow of mass towards the center. This model also has an 
m value near the region of unstable generalized polytropes [4]. 

D. Other Tests 

A variety of other equilibrium configurations have been tested. In all cases, 
the results are very good for at least 5T. In general, the less rapidly g(x, U, CL, 0) 
decreases with x, U, and p the less accurate the results. Thus, if the initial condition 
is an IZ = 1.5 polytrope, the results are poorer than those obtained with an n = 2.5 
polytrope. 
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IV. A NO~\~EQUILIBRIUM TEST 

A common initial condition used in stellar dynamics calculations [8] is 

g(x, 24 p, 0) = const. exp(-z?U,2/2), (38) 

where u,, and /3 are adjusted such that K//a = - l/4 (i.e., one half of the equilibrium 
value). Thus, one expects the system to undergo a fairly rapid collapse. Previous 
work [5, 81 also indicates that the velocity distribution in the outer regions will 
become increasing anisotropic. The same coordinate grid used in Section III 
(with u,,~ = 10, T = 6.65 x 1O-2, 4~ = 0.15OT) was used to evolve such a system. 

The system does collapse and 1 K/Q 1 rises. After ~107’, the central density 
(p,) has increased by a factor of 100. The initially isotropic velocity distribution 
(i = 1) becomes increasingly anisotropic (i = 0.7 at T = 0.65), particularly in 
the outer regions. The quantity F, 

F = ((~4~) - 3((+)2>2, (39) 

measures deviations from a Maxwellian velocity distribution [5]. Initially, 
F = - 1.04 x 10-7, but it steadily increased to F = 1.13 at 7 == 0.65. Hence, 
there is an excess of high velocity particles relative to the Maxwell-Boltzmann 
distribution. The majority of these are also in the outer region (the “halo”). 
Finally, in Fig. 1, the density distribution at T = 0.65 is plotted. The full curve 
represents the isothermal distribution (IIIA) that best matches the numerical 
results at the origin. 

FIG. 1. The density distribution for the nonequilibrium model after -10 crossing times. 
The full curve shows the density distribution for an isothermal sphere. 
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With the present numerical grid, the accuracy obtained here is poorer than for 
other reported work. However, the integration time does not depend on the number 
of particles in the system, nor have special assumptions regarding the physical 
state been made. Moreover, our knowledge of the evolution of self-gravitating 
systems is severely limited to a very few accurate integrations based on an even 
smaller set of initial conditions. With even the coarse grid used here, large scale 
experimentation with the initial conditions is possible. 

APPENDIX 

Fishman [3] first calculated the weights, wk’, and the values uk for the Gaussian 
quadrature of 

s 1 u”f(t.4) du = f wJJ(uJ. 
0 bl 

The largest value of K he considered was 8. The values for {u,}, {w;} when K = 16 
are in Table AT. 

TABLE AI 

Numbers for Gaussian Quadrature” 

1 2.1393563 - 2 
2 5.6775714 - 2 
3 1.0631403 - 1 
4 1.6844412 - 1 
5 2.4117474 - 1 
6 3.2217008 - 1 
I 4.0882761 - 1 
8 4.9836244 - 1 
9 5.8789703 - 1 

10 6.7455380 - 1 
11 7.5554754 - 1 
12 8.2827529 - 1 
13 8.9039932 - 1 
14 9.3992363 - I 
15 9.7525698 - 1 
16 9.9527233 - 1 

1.2778411 - 5 
1.3757810 - 4 
6.3446000 - 4 
1.9235319 - 3 
4.4948489 - 3 
8.7475455 - 3 
1.4803777 - 2 
2.2357186 - 2 
3.0612038 - 2 
3.8348046 - 2 
4.4112663 - 2 
4.6506221 - 2 
4.4496613 - 2 
3.7685767 - 2 
2.6460904 - 2 
1.1999366 - 2 

Q The notation 1.23 - 4 means 1.23 x lo-*. 
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The values for (&, (wi} to be used in the evaluation of 

s +1 fb-4 4 = i wf(/d --1 j=l WI 

are the standard ones obtained by using Legendre polynomials. 
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